Automorphisms of the Unit Disk

Let $\mathbb{D} = \{z : |z| < 1$. We want to describe all conformal maps from \mathbb{D} onto \mathbb{D} . We will postpone doing this and instead describe all linear fractional transformations T from $\partial \mathbb{D}$ onto $\partial \mathbb{D}$ that take \mathbb{D} into \mathbb{D} . A linear fractional transformation takes circles to circles, so T must take all points in \mathbb{D} to points in \mathbb{D} and all points z with |z| > 1 to points z with |z| > 1; or all points in \mathbb{D} to |z| > 1 and points with |z| > 1 to points in \mathbb{D} . This is proved using the intermediate value theorem applied to |T(z)| and the fact that |T(z)| = 1 exactly when |z| = 1.

Theorem 1. The linear fractional transformations that map |z| = 1 to |z| = 1 and \mathbb{D} to \mathbb{D} can be described by

$$\lambda \frac{z-a}{1-\bar{a}z}, |a| < 1, |\lambda| = 1;$$

and also by

$$\frac{az+\bar{b}}{bz+\bar{a}}$$
, $|a|^2-|b|^2=1$.

Proof. We'll organize the proof in steps. Assume (new meaning of the letters a, b, c, d).

$$Tz = \frac{az+b}{cz+d}.$$

First we prove $d \neq 0$. If d = 0, the condition $ad - bc \neq 0$ implies $bc \neq 0$. Hence T can be written as $\frac{a}{c} + \frac{b}{cz}$. This implies that $T(0) = \infty$, which can't happen. So $d \neq 0$.

Now we know $d \neq 0$. Next we consider c = 0. Then since $ad - bc \neq 0$, $a \neq 0$. We have

$$Tz = \frac{az+b}{d} = \frac{a}{d}(z+\frac{b}{a}).$$

The image of |z| = 1 by this T is a circle with center $\frac{b}{d}$ and radius $|\frac{a}{d}|$. This is supposed to be the circle |z| = 1, so b = 0 and |a| = |d|. This implies that $Tz = \lambda z$, with $|\lambda| = 1$. That is one of our cases.

Next we consider $d \neq 0, c \neq 0$, and prove that in this case $a \neq 0$. If a = 0, we have

$$Tz = \frac{b}{cz+d}.$$

This implies that $T(\infty) = 0$ and that is not possible.

Finally, we prove that $b \neq 0$ when $adc \neq 0$. If b = 0, then

$$Tz = \frac{az}{cz + d}.$$

Then

$$|az|^2 = |cz|^2 + |d|^2 + 2Re(c\bar{d}z),$$

 $|a|^2 = |c|^2 + |d|^2 + 2Re(c\bar{d}z).$

Let $c\bar{d} = re^{it}$ and $z = e^{i\theta}$. Then $2Re(c\bar{d}z) = re^{i(t+\theta)}$ and this varies with θ unless r = 0. This implies $c\bar{d} = 0$, which is contrary to our assumption. So $b \neq 0$.

Now introduce new letters and write T as

$$Tz = \lambda \frac{z - a}{1 - dz}.$$

Since Ta = 0, |a| < 1. Also $T(0) = -\lambda a$ so $|\lambda a| < 1$.

The following relations, when |z|=1,

$$|\lambda z|^2 + |a\lambda|^2 - 2Re(\bar{a}|\lambda|^2 z) = 1 + |dz|^2 + 2Re(dz),$$

$$|\lambda|^2 + |a|^2||\lambda|^2 = 1 + |d|^2 + 2Re((\bar{a}|\lambda|^2 - d)z),$$

imply

$$d = |\lambda|^{2} \bar{a},$$
$$|\lambda|^{2} + |a|^{2} ||\lambda|^{2} = 1 + |d|^{2},$$

by an argument similar to a previous argument. Substituting, we get a quadratic equation for $|\lambda|^2$,

$$|\lambda|^4 - (1 + |a|^2)|\lambda|^2 + 1,$$

with solutions $|\lambda|^2 = 1$, $\frac{1}{|a|^2}$. Since $|a\lambda| < 1$, the second solution is ruled out. So $|\lambda| = 1$, $d = \overline{2}$, and these are the only possible linear fractional transformations that map \mathbb{D} onto \mathbb{D} . It's easy to verify that they do map \mathbb{D} onto \mathbb{D} .

By rescaling by, we can produce the second form.